#VanishingGlaciers was an evidence-based communications campaign that ran on social media during COP24 to highlight the large-scale environmental transformation occurring in the world’s mountains as glaciers melt – and to call for tougher action on emissions to mitigate their loss. 

The campaign brought together the mountain research community involved in the Sustainable Mountain Development for Global Change (SMD4GC) programme, condensing their research into the campaign’s 10 key messages – which are also being addressed as part of the IPCC SROCC and AR6.

 Click image to enlarge social media post

Mountain glaciers are among the most visible and emblematic indicators of climate change. Worldwide, glaciers are losing mass at unprecedented rates – a process that has accelerated in recent decades, with record losses in the 21st century. As an effect of widespread glacier shrinkage, the high mountains of the world are currently experiencing a historically unparalleled, large-scale environmental transformation, with profound and far-reaching impacts for landscapes, ecosystems, and people.

Glaciers provide important ecosystem services. In the tropical Andes, for instance, glacier meltwater offers critical support to sensitive ecosystems such as high-mountain wetlands. Ongoing glacier retreat therefore gives rise to ecosystem changes, and the eventual disappearance of glaciers in future will ultimately disrupt these ecosystems and their service functions. Glacier retreat also impacts water provision for people and economies downstream. Central Asia, several regions in South Asia, and the tropical Andes are global hotspots in this regard; small-scale and large-scale agriculture, hydropower production, rural communities, and urban centers crucially depend upon glacier meltwater during the annual dry season. Moreover, for many people – and indigenous people in particular – the continuous retreat of glaciers represents a significant cultural loss because they maintain a close relationship to mountains and glaciers as a part of their lives.

Continuous glacier retreat also leads to extreme events and new and evolving disaster risks for downstream populations and vulnerable transport and energy infrastructure, such as massive glacier lake outburst floods or enhanced sediment flux. Countries and people are facing evolving and insufficiently recognized challenges and risks that urgently require adaptation solutions.

FINAL Background 2 FLYER COP24 PRINT Page 1New studies now demonstrate that the difference in impact between low and high greenhouse gas emission pathways on 21st century glacier retreat and its related effects is enormous. In the Andes, as one example of an important region affected by glacier retreat, low-emission pathways could safeguard 50 percent of present glacier areas. High-emission pathways, meanwhile, would result in an almost complete disappearance of glaciers by the end of this century – with dramatic consequences. The glaciated mountains of the world are therefore not only icons of climate change, but are also tangibly showcasing the tremendous importance of both climate change mitigation and adaptation efforts. 

 

Vanishing Glaciers: 10 Key Messages

Under low emission pathways up to 50% of current glacier ice will remain in some regions. High emission pathways will lead to large-scale deglaciation.

References:

  • Clarke, G.K.C., Jarosch, A.H., Anslow, F.S., Radić, V., Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci. 2015, 8, 372–377.
  • Kraaijenbrink, P.D.A., Bierkens, M.F.P., Lutz, A.F., Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260.
  • Salzmann, N., Machguth, H., Linsbauer, A. The Swiss Alpine glaciers’ response to the global ‘2 °C air temperature target. Environ. Res. Lett. 2012, 7, 044001.
  • Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom, R., Perry, B., Salzmann, N., Schwarb, M., Suarez, W. ‘The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents.’ Geophys. Res. Atmospheres 2017, 2016JD025943.


As glaciers disappear, sensitive and unique ecosystems are being degraded as a result of the loss of critical water sources.

References:

  • Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R. S.; Clague, J. J.; Vuille, M.; Buytaert, W.; Cayan, D. R.; Greenwood, G.; Mark, B. G.; Milner, A. M.; Weingartner, R. & Winder, M. Toward mountains without permanent snow and ice. Earth’s Future, 2017, 5, 418-435.
  • Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J. & Oré, M. T. The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdisciplinary Reviews: Water, 2015, 2, 715-733.
  • Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nature Climate Change, 2013, 3, 24-29.
  • Milner, A.M., Khamis, K., Battin, T.J., Brittain, J.E., Barrand, N.E., Füreder, L., Cauvy-Fraunié, S., Gíslason, G.M., Jacobsen, D., Hannah, D.M., Hodson, A.J., Hood, E., Lencioni, V., Ólafsson, J.S., Robinson, C.T., Tranter, M., Brown, L.E. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. 2017. 114, 9770–9778.


Glaciers have important spiritual meanings to many mountain communities. The disappearance of glaciers implies a substantial loss of cultural ecosystem services and impacts mountain people’s lives and livelihoods.

References:

  • Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacis, M.; Yarleque, C.; Elison Timm, O.; Condom, T.; Salzmann, N. & Sicart, J.-E. Rapid decline of snow and ice in the tropical Andes — impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.
  • Carey, M.; Molden, O. C.; Rasmussen, M. B.; Jackson, M.; Nolin, A. W. & Mark, B. G. Impacts of glacier recession and declining meltwater on mountain societies. Annals of the American Association of Geographers, 2017, 107, 350-359
  • Palomo, I. Climate change impacts on ecosystem services in high mountain areas: a literature review. Mountain Research and Development, 2017, 37, 179-187.
  • Sherry, J., Curtis, A., Mendham, E., Toman, E. Cultural landscapes at risk: Exploring the meaning of place in a sacred valley of Nepal. Global Environmental Change, 52, 2018, 190-200.
  • Diemberger, H., Hovden, A., Yeh, E.T. The honour of the snow-mountains is the snow. Tibetan livelihoods in a changing climate, in: The High-Mountain Cryosphere. C. Huggel, M. Carey, J.J. Clague and A. Kääb (Eds.). Cambridge University Press, Cambridge and New York, 2015, pp. 249–271.
  • Jurt, C., Brugger, J., Dunbar, K.W., Milch, K., Orlove, B. Cultural values of glaciers, in: The High-Mountain Cryosphere, C. Huggel, M. Carey, J.J. Clague and A. Kääb (Eds.). Cambridge University Press, Cambridge and New York, 2015, pp. 90–106.


A decline in water resources due to melting glaciers is expected to result in greater competition for water.

References:

  • Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 2018, 8, 135-140
  • Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J. & Oré, M. T. The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdisciplinary Reviews: Water, 2015, 2, 715-733.
  • Masiokas, M. H.; Villalba, R.; Luckman, B. H.; Le Quesne, C. & Aravena, J. C. Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region. Journal of Climate, 2006, 19, 6334-6352.
  • Buytaert, W., Moulds, S., Acosta, L., Bièvre, B.D., Olmos, C., Villacis, M., Carolina Tovar, Verbist, K.M.J. Glacial melt content of water use in the tropical Andes. Environ. Res. Lett. 2017, 12, 114014.


Melting glaciers and thawing permafrost create new hazards and increase the risk of disaster losses.

References:

  • Haeberli, W.; Schaub, Y. & Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 2017, 293, 405-417.
  • Benn, D. I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L. I.; Quincey, D.; Thompson, S.; Toumi, R. & Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 2012, 114, 156-174.
  • Allen, S. K.; Linsbauer, A.; Randhawa, S. S.; C., H. & Kumar, R. A. Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats Natural Hazards, 2016, 84, 1741-1763.
  • Cook, S. J.; Kougkoulos, I.; Edwards, L. A.; Dortch, J. & Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere, 2016, 10, 2399-2413.
  • Zaginaev, V.; Ballesteros-Cánovas, J. A.; Erokhin, S.; Matov, E.; Petrakov, D. & Stoffel, M. Reconstruction of glacial lake outburst floods in northern Tien Shan: implications for hazard assessment. Geomorphology, 2016, 269, 75-84.


Adaptation to changing water and risk realities in glaciated mountain basins is key for sustainable development and the avoidance of conflict over scarce resources, both within and across territorial boundaries.

References:

  • Xenarios, S.; Gafurov, A.; Schmidt-Vogt, D.; Sehring, J.; Manandhar, S.; Hergarten, C.; Shigaeva, J. & Foggin, M.
    Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge gaps, and data constraints
    Regional Environmental Change, in press.
  • Salzmann, N.; Huggel, C.; Rohrer, M. & Stoffel, M. Data and knowledge gaps in glacier, snow and related runoff research — a climate change adaptation perspective. Journal of Hydrology, 2014, 518, Part B, 225-234.
  • McDowell, G., Huggel, C., Frey, H., Wang, F.M., Cramer, K., Ricciardi, V. Adaptation action and research in glaciated mountain systems: Are they enough to meet the challenge of climate change? Glob. Environ. Change, 2019, 54, 19–30.
  • Mark, B. G.; French, A.; Baraer, M.; Carey, M.; Bury, J.; Young, K. R.; Polk, M. H.; Wigmore, O.; Lagos, P.; Crumley, R.; McKenzie, J. M. & Lautz, L. Glacier loss and hydro-social risks in the Peruvian Andes. Global and Planetary Change, 2017, 159, 61-76.


The disappearance of glaciers results in the irreversible loss of unique archives of human, environmental, and climate history.

References:

  • Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E. & Mountain, K. A paleoclimatic perspective on the 21st-century glacier loss on Kilimanjaro, Tanzania. Annals of Glaciology, 2011, 52, 60-68.
  • Yarleque, C.; Vuille, M.; Hardy, D. R.; Timm, O. E.; De la Cruz, J.; Ramos, H. & Rabatel, A. Projections of the future disappearance of the Quelccaya Ice Cap in the Central Andes. Scientific Reports, 2018, 8, 15564
  • Callanan, M. Managing frozen heritage: some challenges and responses. Quaternary International, 2016, 402, 72-79.
  • Hafner, A. & Schwörer, C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quaternary International, 2018, 484, 3-18.
  • Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, T. & Schwikowski, M. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago. Scientific Reports,2017, 7, 41855, doi:10.1038/srep41855.
  • Nesje, A.; Pilø, L. H.; Finstad, E.; Solli, B.; Wangen, V.; Ødegård, R. S.; Isaksen, K.; Støren, E. N.; Bakke, D. I. & Andreassen, L. M. The climatic significance of artefacts related to prehistoric reindeer hunting exposed at melting ice patches in southern Norway. The Holocene, 2012, 22, 485-496.


Unprecedented rapid glacier retreat is modifying landscapes and giving rise to new lakes and ecosystems. Adaptation actions are needed to capture opportunities and reduce risks.

References:

  • Shugar, D. H.; Clague, J. J.; Best, J. L.; Schoof, C.; Willis, M. J.; Copland, L. & Roe, G. H. River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nature Geoscience, 2017, 10, 370-375.
  • Haeberli, W.; Buetler, M.; Huggel, C.; Lehmann Friedli, T.; Schaub, Y. & Schleiss, A. J. New lakes in deglaciating high-mountain regions — opportunities and risks. Climatic Change, 2016, 139, 201-214.
  • Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S. U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A. P.; Anderson, B.; Bajracharya, S.; Baroni, C.; Braun, L. N.; Cáceres, B. E.; Casassa, G.; Cobos, G.; Dávila, L. R.; Delgado Granados, H.; Demuth, M. N.; Espizua, L.; Fischer, A.; Fujita, K.; Gadek, B.; Ghazanfar, A.; Hagen, J. O.; Holmlund, P.; Karimi, N.; Li, Z.; Pelto, M.; Pitte, P.; Popovnin, V. V.; Portocarrero, C. A.; Prinz, R.; Sangewar, C. V.; Severskiy, I.; Sigurðsson, O.; Soruco, A.; Usubaliev, R. & Vincent, C. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 2015, 61, 745-762.
  • Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J. L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; Scheel, M.; Lejeune, Y.; Arnaud, Y.; Collet, M.; Condom, T.; Consoli, G.; Favier, V.; Jomelli, V.; Galarraga, R.; Ginot, P.; Maisincho, L.; Mendoza, J.; Ménégoz, M.; Ramirez, E.; Ribstein, P.; Suarez, W.; Villacis, M. & Wagnon, P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 2013, 7, 81-102.
  • Drenkhan, F., Guardamino, L., Huggel, C., Frey, H. Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Glob. Planet. Change,2018, 169, 105–118.


Across many regions of the world, livelihoods and the economy strongly depend on glacier water resources.

References:

  • Huggel, C.; Muccione, V.; Carey, M.; James, R.; Jurt, C. & Mechler, R. Loss and Damage in the mountain cryosphere. Regional Environmental Change, 2018 (in press).
  • Xenarios, S.; Gafurov, A.; Schmidt-Vogt, D.; Sehring, J.; Manandhar, S.; Hergarten, C.; Shigaeva, J. & Foggin, M. Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge gaps, and data constraints. Regional Environmental Change, in press.
  • Drenkhan, F.; Guardamino, L.; Huggel, C. & Frey, H. Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Global and Planetary Change, 2018, 169, 105-118.
  • Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacis, M.; Yarleque, C.; Elison Timm, O.; Condom, T.; Salzmann, N. & Sicart, J.-E. Rapid decline of snow and ice in the tropical Andes — impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.


Tropical mountain wetlands can store a mean amount of 1,200 tons of carbon per hectare. However, loss of glaciers and access to vital water from glacier-fed streams degrades these ecosystems – potentially transforming them from carbon sinks to carbon sources.

References:

  • Bock, M.; Schmitt, J.; Beck, J.; Seth, B.; Chappellaz, J. & Fischer, H. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proceedings of the National Academy of Sciences, 2017, 114, E5778-E5786.
  • Benavides, J.C., Vitt, D.H. & Wieder, R.K. The influence of climate change on recent peat accumulation patterns of Distichia muscoides cushion bogs in the high-elevation tropical Andes of Colombia. Journal of Geophysical Research: Biogeosciences2013, 118, 1627-1635.
  • Hribljan, J.A., Suárez, E., Heckman, K.A., Lilleskov, E.A. & Chimner, R.A. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetlands Ecology and Management2016, 24, 113-127

Papers with a focus on the change confirming widespread deglaciation in the (near) future, but with adverse and positive impacts:

  • Milner, A. M.; Khamis, K.; Battin, T. J.; Brittain, J. E.; Barrand, N. E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G. M.; Jacobsen, D.; Hannah, D. M.; Hodson, A. J.; Hood, E.; Lencioni, V.; Ólafsson, J. S.; Robinson, C. T.; Tranter, M. & Brown, L. E. Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences, 2017, 114, 9770-9778.
  • Clarke, G. K. C.; Jarosch, A. H.; Anslow, F. S.; Radić, V. & Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nature Geoscience, 2015, 8, 372-377.

 

#VanishingGlaciers Featured by UNFCCC

 

SMD4GC

The objective of SMD4GC is to contribute to sustainable development in mountain regions and to increase the resilience of vulnerable mountain people who are increasingly exposed to the impacts of global change. The programme works through partner organizations in the Andes, Africa, the Hindu Kush Himalaya, Central Asia, and Switzerland. Funded by the Swiss Agency for Development and Cooperation (SDC), the programme was initiated in 2014 and draws on Switzerland’s long tradition of supporting sustainable development in mountains.

 

  SDC CMYK hoch pos   FDDM court superpose fondblanc  1 Logo CDE Centre cmyk 2 MRI logo new   Master ICIMOD Logo
         
  ARCOS logo transparent Landscape format
CMYK Horiz english tagline
  MSRI UCA Logo Blue Frame Full ENG.eps   UZH Website 500x300 20180226 1 1024x614   UNF Logo 100pr pos

Newsletter subscription

Login